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Behavioral data are notable for presenting challenges to their statistical analysis, often due to the difficulties in measuring behavior 
on a quantitative scale. Instead, a range of qualitative alternative responses is recorded. These can often be understood as the 
outcome of a sequence of binary decisions. For example, faced by a predator, an individual may decide to flee or stay. If it stays, it 
may decide to freeze or display a threat and if it displays a threat, it may choose from several alternative forms of display. Here we 
argue that instead of being analyzed using traditional nonparametric statistics or a series of separate analyses split by response 
categories, this kind of data can be more holistically analyzed using a generalized linear mixed model (GLMM) framework extended 
to binomial response trees. Originally devised for the social sciences to analyze questionnaires with multiple-choice answers, 
this approach can easily be applied to behavioral data using existing GLMM software. We illustrate its use with 2 representative 
examples: 1) repeatability in the measurement of antipredator display escalation and 2) the analysis of predator responses to prey 
appearance.

Key words: behavioral analysis, categorical data, escalation, ethology, GLMM, item response theory, ordinal data, predator–
prey interactions, R, repeatability, response trees.

INTRODUCTION
Analyzing behavioral responses often poses statistical challenges 
because they rarely conform to the normality assumptions required 
for parametric tests (Lehner 1996; Martin and Bateson 2007). 
Traditionally, this problem has been circumvented with some suc-
cess by implementing nonparametric statistics, which make few 
assumptions about the distribution of  the data. Although non-
parametric tests are widely used and have provided a convenient 
solution, it is widely recognized that they limit the interpretation 
of  behavioral data in several ways. Standard nonparametric tests 
are often uninformative of  the effect size, have low power to detect 
significant differences (Jennions and Møller 2003), and their algo-
rithms often provide inaccurate estimates of  P values for small 

samples (Mundry and Fischer 1998). Moreover, they allow little 
more than the simplest sampling designs, making it impossible to 
analyze hierarchical samples, complex correlation structures (e.g., 
genetic, spatial or temporal correlations), or repeated measures 
(e.g., to calculate repeatability).

Over the last few decades, generalized linear models and general-
ized linear mixed effect models (GLMMs) have emerged as powerful 
tools for data analysis in biology (Bolker et al. 2009). They provide 
great flexibility to model a variety of  non-Gaussian responses com-
mon in behavioral research, including counts (e.g., number of  mat-
ings), frequencies (e.g., pecks per minute), time spans (e.g., latency 
to escape), and dichotomous responses (e.g., escape or not) without 
the need to resort to nonparametric tests or transformations of  dif-
ficult interpretation. The GLMM framework not only allows for 
flexibility in the type of  the response variable but also in its cova-
riance structure. This allows the incorporation of  complex data 
structures such as hierarchical sampling (e.g., individuals within  
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families), repeated measures, and other types of  nonindependent 
data (temporal and spatial correlations, genetic and phylogenetic 
relatedness, etc.).

Although the GLMM framework is increasingly used in behav-
ioral ecology and ethology to account for many of  the problems of  
quantitative data, a large amount of  behavioral data is not strictly 
quantitative. Behavior is often recorded as a series of  categories 
(e.g., from the species’ ethogram), from which we wish to make 
quantitative statements. For example, one may record the intensity 
of  the courtship display of  a great-crested grebe (Podiceps cristatus) 
in terms of  what stage in the stereotyped behavioral sequence it 
ended (approach, head shaking, weed-picking display, joint diving, 
or mating; Huxley 1914). While the descriptor is not quantitative 
in itself, this behavioral escalation has an underlying quantitative 
yet immeasurable driver (e.g., motivation). In other cases, recorded 
behaviors may reflect alternative tactics rather than degrees of  esca-
lation and as such do not show any ordered structure. For example, 
under threat of  an intruder, a common lizard (Lacerta vivipara) may 
be submissive and either escape or freeze to avoid the intruder. 
Alternatively it may show dominance and either perform a typical 
push-up threat display or fight the intruder off (Gvozdík and Van 
Damme 2003). In the case of  an escalation process, such as in the 
grebe example, we may traditionally use nonparametric tests on the 
ranking of  the behaviors according to intensity (e.g., Rillich et  al. 
2011; Olofsson et al. 2012). In the case of  alternative strategies, we 
may use contingency tables to evaluate associations between treat-
ments and behavioral outcomes (Ruxton and Neuhäuser 2010). Yet 
these are limited to testing for an association and do not inform us 
of  the size of  effects. Moreover, they do not account for the covari-
ance structure of  the measured variables and limit the ability to 
analyze most realistic experimental designs, thus precluding the 
estimation of  quantities such as intraindividual repeatability, spa-
tiotemporal correlations, or heritabilities. Multinomial GLMMs 
do allow for the specification of  complex correlation structures in 
the analysis of  categorical outcomes and have recently been devel-
oped in the behavioral and evolutionary literature (Hadfield 2010; 
Hadfield and Nakagawa 2010; Dean et  al. 2011). Multinomial 
GLMMs model the probability of  occurrence of  each of  a set 
mutually exclusive behaviors, yet as explained above, it is often 
more insightful to interpret behavioral categories as the com-
pounded result of  a series of  hierarchical decisions. For example, 
the probability of  a common lizard showing a push-up display in 
the example above is the compound of  2 probabilities: the prob-
ability of  displaying aggression times the probability of, given that, 
displaying the push-up rather than a direct threat. Those 2 proba-
bilities bear a more straightforward biological meaning, and it may 
therefore be sensible to test hypotheses on those rather than the 
unconditioned multinomial probabilities of  freeze, escape, push-up, 
and threat separately.

Psychologists and social scientists have worked on a solution 
to analyzing these types of  data that behavioral ecologists often 
encounter. Item response theory (IRT; Rasch 1981) was originally 
designed to analyze responses to tests and questionnaires where 
the responses take the form of  categorical multiple-choice answers. 
Originally, the interest lied in understanding the relationship 
between individual qualities and their performance in tests com-
posed of  a variety of  questions or items. In its simplest version, the 
items could be scored dichotomously (e.g., correct–wrong), and a 
function was fit to relate the propensity to answer questions cor-
rectly to a given property of  the individual tested. Further develop-
ments allowed the incorporation of  polytomous outcomes (Ostini 
and Nering 2006). In its most recent formulations, item response 

models can be parameterized as GLMMs of  binomial or multi-
nomial data (De Boeck and Wilson 2004; De Boeck et  al. 2011), 
where the relationship among the multinomial outcomes of  differ-
ent types of  items (e.g., tasks, questions or scenarios) is explicitly 
modeled. We believe this type of  modeling will prove extremely 
useful to scientists recording animal behavior. Recording the cat-
egories of  behavior in an ethogram under different scenarios is 
analogous to filling in a questionnaire. For example, imagine the 
grebe in the above example is asked “Do you like that male?” and 
is given the choice to answer “Not interested,” “Somewhat inter-
ested,” “Very interested,” corresponding to the display of  different 
behaviors. The literature on IRT is extensive, covering a multitude 
of  data types, and we very much encourage the readers to explore 
it (some good references include Embretson and Reise 2000; Baker 
2001), but we here focus on one specific type of  model that we find 
particularly promising in behavioral ecology: Item Response Trees 
(IRTrees; De Boeck and Partchev 2012).

IRTree models are designed to analyze multivariate responses 
that result from a decision tree of  binary responses (De Boeck 
and Partchev 2012). Response trees conceptualize the outcome 
of  a behavioral observation (or response) as the final product of  
a decision process. The decision process is conceptualized as a 
tree where each branching node represents a question, and the 
branches represent a binomial trial with 2 alternative responses. 
To illustrate, in the intruder lizard example a first node may ask 
whether to be submissive or aggressive and, conditional on that 
response, a second node asks whether to escape or freeze (in the 
case of  submission), or an alternative third node asks whether to 
display or fight (in the case of  having gone the aggressive route). 
The data is then analyzed as a multinomial response where the 
correlation structure is influenced by the relationship of  potential 
outcomes in the node.

Conceptualizing the data as a correlated multinomial response 
allows it to be analyzed in a GLMM framework and thus take 
advantage of  its flexibility in modeling a variety of  experimental 
and sampling designs. The key to implementing binomial trees as 
GLMMs is to describe the response variable, decomposed in its 
component tree nodes, as a series of  0s or 1s depending on whether 
the response to any given node was positive or negative. That is, 
each observation will consist of  as many binary data entries as there 
are nodes crossed in the tree path to the final behavioral outcome. 
The binomial entries should be grouped in the model by observa-
tion and node in order to account for their interdependency. The 
specification of  random effects can allow the incorporation of  a 
variety of  experimental designs including repeated measures, time 
series, or hierarchical sampling, as well as correlation structures 
among nodes (e.g., whether individual responses to one node tend 
to correlate with their responses to another node).

In this article, we use 2 examples to illustrate the use of  IRTree 
GLMMs in behavioral research. The examples represent the 2 
potentially common type of  scenarios, as discussed above. First, 
we discuss an example of  behavioral escalation in the mountain 
katydid Acripeza reticulata, where the categories can be ordinated. 
Second, we analyze an experiment on great tit Parus major responses 
to alternative prey, where the scored behaviors can be grouped into 
alternative paths. With the 2 examples, we will also exemplify how 
the random effects (e.g., individual variation) can be coded as affect-
ing all nodes equally or differently. We will compare our proposed 
approach with more common nonparametric tests. For a detailed 
description on how to implement these analyses using standard 
GLMM packages in program R (R Core Team 2014), we have cre-
ated an accompanying tutorial as Supplementary Appendix S1.
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EXAMPLE 1: INDIVIDUAL REPEATABILITY 
OF KATYDID DEIMATIC DISPLAY
Mountain katydids (A.  reticulata) inhabit Eastern Australia and are 
notable for their striking antipredator deimatic (i.e., startle) display 
(Umbers and Mappes 2015). Here we present data collected with 
the aim of  measuring the repeatability of  the antipredator response 
within individuals (Umbers and Mappes 2015) and the effect of  
desensitization on the response. In the experiment, 45 katydids 
were tapped twice consecutively on days 1, 3, and 5 of  the experi-
ment, and their behavioral response measured on a scale of  1–4, 1 
being a mild response (antenna wiggling) and 4 being the highest 
level of  escalation (full deimatic display where an individual holds 
its wings up and displays its vivid warning signals; Figure 1a).

Traditionally, the repeatability of  pairs of  ordinal measure-
ments is analyzed by calculating the Spearman rank correlation 
between the first and second measures of  individuals on a given 
day (Martin and Bateson 2007). In our case, the Spearman’s cor-
relation is ρ = 0.67 (P < 0.001). The limitation of  this approach is 
that, because it uses ranks, it lacks quantitative interpretation unless 
one assumes the different levels of  the ordered category to be equi-
distant (e.g., the difference between “mild” and “medium” is the 
same as between “medium” and “medium high”). Moreover, it is 
not comparable with standard Anova-based repeatability measures 
(e.g., proportion of  variance explained by individual) used for nor-
mally distributed variables. On the other hand, analogous measures 
can be calculated for non-Gaussian distributions if  we can use a 
GLMM specification (Nakagawa and Schielzeth 2010).
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Figure 1
Diagrammatic representation of  model structure and results from the 2 case studies. (a) Katydid deimatic response can escalate from mild to strong. This can 
be represented as a decision tree with 3 nodes where each node is associated with a binomial probability of  escalating (1) or not (0). For example, a medium 
response corresponds to n1 = 1, n2 = 0, n3 and n4 remained undefined. The table shows the estimates of  variance components and fixed effects. Note that 
the intercept is centered at day 1 so that they can be interpreted as the logit probabilities of  escalating on the first day of  observations. Pictures: 3 intensities 
of  the katydid deimatic display; © Kate DL Umbers. (b) Great tit alternative responses to butterfly models are determined by a decision tree involving the 
probability of  responding (node 1, n1), the probability of  responding adversely (node 2, n2), the probability of  exploring given that the response has been of  
interest (node 3, n3), and the probability of  fleeing given an aversive response (node 4, n4). Black represents outcomes coded as 1 in the binomial trial, gray 
arrows represent outcomes coded as a 0. The tables show the model estimates, including node-specific individual random effects and their correlations, as 
well as treatment (eyespot) effects for all 4 nodes. Photo: great tit staring at a butterfly model; © Sebastiano De Bona. Note that for clarity, we only include Z 
tests and P values for the effects of  interest, and not the intercepts (for expanded results, see Supplementary Appendix S1).

1270

 by guest on June 16, 2016
http://beheco.oxfordjournals.org/

D
ow

nloaded from
 

http://beheco.oxfordjournals.org/lookup/suppl/doi:10.1093/beheco/arv091/-/DC1
http://beheco.oxfordjournals.org/


López-Sepulcre et al. • Analyzing behavioral response trees

To use the IRTree GLMM approach, the katydid’s 4-level escala-
tion can be envisioned as a sequence of  binomial decisions with 3 
nodes where the individual determines whether to go up one level 
of  escalation or stay at their current level (Figure 1a). Because it is 
not known whether the defined behaviors represent a continuum on 
a linear scale, nodes can be assigned different baseline probabilities 
by including node identity as a fixed factor in the model. Such an 
approach allows for different intercepts for each node (i.e., different 
probabilities of  escalating at different levels), therefore relaxing the 
assumption of  equal distance between escalation levels. To test and 
account for the fact that individuals may desensitize with repeated 
stimulation, we include day of  trial as a fixed covariate. Incorporating 
a node–day interaction could show whether the day effect is different 
as individuals go up the display intensity scale. However, for simplic-
ity of  illustration, we assume that day of  observation has a similar 
effect on the escalation probabilities at all levels. Finally, because 
observations were performed twice a day and on different individ-
uals, we include random effects for individual and replicate within 
each day (for full details, see Supplementary Appendix S1).

Including individual as a random effect quantifies the variance 
of  the behavior (in this case, sequential probability of  escalation) 
among individuals (see the table in Figure  1a). Repeatability can 
then be estimated as the proportion of  variance explained by the 
individual (Nakagawa and Schielzeth 2010). Because the distribu-
tion-specific variance for a logit-binomial model is π2/3 (Nakagawa 
and Schielzeth 2010), the individual repeatability of  the escalating 
behavior is thus thus the individual variance divided by the total 
of  all variance components plus the distribution’s link specific 

variance 
σ
σ

σ
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2

2

2

2 2
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=
+ +

 = 1.54/(1.54 + 0 + 3.28) = 0.42 

(Figure  1a), where σind
2  is the individual variance and σobs

2  is the 
observation level variance (or additive overdispersion component 
sensu Nakagawa and Schielzeth 2010). The behavior is consider-
ably repeatable because 42% of  the variance can be explained by 
individual identity. The results also indicate a significant negative 
effect of  trial day (−0.34 ± 0.08, P  <  0.01; Figure  1a), suggesting 
that individuals may desensitize with the number of  trials.

EXAMPLE 2: RESPONSES OF GREAT TITS 
TO BUTTERFLY EYESPOTS
Our second example, a subset of  data from a larger experiment, 
aims at investigating the role of  butterfly wing eyespots in deter-
ring potential predators. In this experiment, individual great tits 
(P. major) were presented with animated computer images of  the owl 
butterfly (Caligo martia) displaying (or not) eyespots on their wings 
(De Bona et al. 2015). Each bird was tested twice on a single treat-
ment. The bird’s behavior was recorded as either 1) nonresponsive, 
2) approach, 3) exploration, 4) startle, or 5) flee.

Traditionally, nonordinated behavioral categories have been often 
analyzed using contingency tables (chi square or Fisher’s Exact test), to 
test whether the association between treatments and behaviors signifi-
cantly departs from random. For our data, both a chi-square approxi-
mation (χ2 = 56.2, P < 0.001) and Fisher’s Exact test (P < 0.001) show 
strong evidence for a nonrandom association. However, this reveals us 
little about which behaviors were different and how, nor allows us to 
account for repeated measures of  individuals.

To be analyzed as an IRTree GLMM, these 5 behavioral catego-
ries can be conceptualized as a nonordered sequential decision tree 
(Figure 1b) determined by 4 binomial nodes: 1)  the probability of  

showing a response (node 1), 2) the probability of  responding aver-
sively (behaviors 4 and 5), rather than to show interest (behaviors 2 
and 3, node 2), 3) whether to explore conditional on having shown 
interest (node 3), and 4) whether to flee given that the response was 
aversive (node 4).

In this case, we are interested in the effect of  the treatment (but-
terfly eyespots), on each of  the nodes separately, because they refer to 
qualitatively different processes. Thus, we include treatment and node 
as interacting fixed factors. For clarity, we set separate intercepts for 
each node. As individual birds were tested more than once, we need 
to include a random effect for individual, which can be node specific, 
because it is possible that individual variation is expressed differently 
at all nodes (for full details, see Supplementary Appendix S1).

The results are shown in the Figure 1b and reveal that the pres-
ence of  eyespots on a butterfly wing only has an effect on node 
2 (interest vs. aversion). In particular, the presence of  eyespots 
increases the probability of  showing an aversive response. The 
strength of  the aversive response (node 4: flee vs. startle) does not 
seem to be affected. We can also assess from the random effect cor-
relation structure (node by individual) the individual correlations. 
For example, the strong positive correlation (0.71) between nodes 3 
and 4 indicates that individuals who tend to respond strongly (flee) 
when aversive, tend to also respond strongly (explore) when inter-
ested. In other words, some individuals tend to be more active than 
others, regardless of  the type of  behavior that the object elicits.

DISCUSSION
Behavioral data can often be conceptualized as a decision tree lead-
ing to alternative categorical outcomes. We believe this applies to a 
large range of  phenomena that behavioral ecologists are interested in, 
including mate choice, social interactions, or antipredatory responses 
that are not easily analyzed using traditional approaches. In Table 1, 
we propose a list of  hypothetical examples that could be analyzed 
using IRTrees. We have shown how, by conceptualizing the behavioral 
responses as decision tree, we can analyze such data using a GLMM 
framework. This provides a variety of  advantages. First, by requiring 
to organize the recorded responses into biologically meaningful deci-
sion structures, it stimulates the researcher to decompose behaviors 
into their constituent components. Second, it allows for simultane-
ously testing those parts, accounting for the structural dependencies 
caused by the trees, and therefore avoiding problems associated with 
performing multiple tests. Third, it allows for complex experimental 
designs, such as repeated measures, or hierarchical sampling designs. 
We have shown examples where individual (random) effects can 
affect all the nodes equally (katydid probability of  deimatic display) 
or separately (alternative responses to butterfly eyespots). The GLMM 
framework allows for the incorporation of  more complex random 
effect structures than the ones shown here, such as genetic related-
ness (i.e., the animal model) or temporal autocorrelation (time series 
of  behaviors). This flexibility permits the measurement of  important 
quantities such as individual repeatability (Nakagawa and Schielzeth 
2010), heritability (Wilson et al. 2009), phylogenetic signal (Hadfield 
and Nakagawa 2010), or correlated behavioral responses (e.g., for the 
study of  personalities), which are not possible to calculate using non-
parametric alternatives. Finally, the parametric nature of  the analyses 
allows for easy estimation of  effect sizes.

Naturally, an increase in model complexity comes at the cost 
of  requiring higher sample sizes. This is particularly important 
to consider in behavioral studies, where sample sizes tend to be 
considerably lower than poll-based studies for which IRT was 
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originally designed. We thus highly recommend the use of  simu-
lations tailored to assess the power of  any given GLMM specifi-
cation and study design where sample size is concerned (Johnson 
et al. 2015). In the context of  IRTs, the clinical psychology litera-
ture on patient-reported outcomes, motivated by stronger limita-
tions in sample size than other applications, has a healthy tradition 
of  providing simulation studies to evaluate power and sample size 
for a variety of  models of  differing complexity (e.g., Holman et al. 
2003; Sébille et  al. 2010; Hardouin et  al. 2011; Blanchin et  al. 
2013; Guilleux et  al. 2014). The general message is that, as the 
models get more complex and the expected effects are smaller, 
appropriate sample sizes required to find significance grow from 
dozens (as in our examples) to a few hundred. Similar conclusions 
are reached by studies on classical multinomial GLMMs (e.g., Jiang 
and Oleson 2011). Other important insights to be gained from 
simulations of  GLMMs include 1)  the estimation accuracy and 
bias of  the random effects (e.g., individual variation) for different 
numbers of  within and between-group observations (van de Pol 

2012) and 2)  the influence of  the random effect structure on the 
confidence of  the estimate and rate of  false positives (Schielzeth 
and Forstmeier 2009). Johnson et al. (2015) provide a detailed tuto-
rial on how to simulate binomial GLMMs with ecological exam-
ple. In Supplementary Appendix S2, we illustrate how to perform 
such simulations specifically for IRTree GLMM models, using the 
katydid and great tit examples.

Psychology and sociology have recently seen important devel-
opments in methods that handle the difficulties of  categorical 
data (Powers and Xie 2008). Many challenges in these fields are 
common to behavioral ecology and ethology and thus provide 
exciting new avenues for behavioral ecologists (see Nettle and 
Penke 2010; Carter et  al. 2013 for similar arguments regard-
ing the study of  animal personalities). Individual response trees 
are a good example of  how this exchange could be highly ben-
eficial. We hope that our article encourages their application to 
behavioral data and inspires a better communication of  statistical 
advances across disciplines.

Table 1
Examples of  hypothetical behavioral applications for IRTree models

Behavior Species Question Categorical responses Explanatory variables

Escalating

Courtship
Blue footed booby

Does male foot color affect 
female interest?

Approach
Feet display
Sky calling
Bill contact
Mating

Foot color intensity as 
fixed effect
Female and male 
identity as random 
effects

Contest
Field crickets

Does previous winning 
experience affect willingness 
to escalate?

Ignore
Antenna fencing
Engagement
Grappling

Number of  previous 
wins as fixed effect
Individual as random 
effect

Anti-predator 
Cuttlefish

Does reproductive status 
affect the probability of  
escalation?

Crypsis
Startle display
Escape jet
Ink release

Reproductive status as 
fixed factor
Individual as random 
effect

Cognition
Corvids

Is there a phylogenetic signal 
of  cognitive ability?

Increasing levels of  complexity in tests Individual, species and 
phylogenetic relatedness 
as random effects

Alternative
Territoriality
Anole lizards

Does size affect the type 
of  behavior shown under 
territorial challenge?
Does temperature affect the 
intensity?

Submissive
 Freeze
 Flee
Aggressive
 Dewlap display
 Chase away

Size and temperature as 
fixed effects interacting 
with node
Focal individual and 
intruder as random 
effects

Social interaction  
Mongolian gerbil

What is the heritability of  
dominance behavior?

Submissive
 Avoid
 Groom
Dominant
 Chase
 Fight

Relatedness matrix as 
node-specific random 
effect

Antipredator
Dice snake

Does the type of  threat affect 
the antipredator strategy?
Is the strategy repeatable 
within individuals?

Defense
 Mimic viper
 Feign death
Attack
 Coil
 Strike

Threat type as node- 
specific fixed factor
Individual as random 
effect

Mate choice
Jumping spiders

Does male leg-flicking 
frequency influence reaction 
of  females?

Aversion
 Chase
 Kill
Interest
 Allow approach
 Mate

Male flicking frequency 
as node-specific fixed 
effect
Male size as covariate
Male and female 
identity as random 
effects

SUPPLEMENTARY MATERIAL
Supplementary material can be found at http://www.beheco.
oxfordjournals.org/
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